
PT symmetry in optics beyond the
paraxial approximation

Changming Huang,1 Fangwei Ye,1,* Yaroslav V. Kartashov,2 Boris A. Malomed,3 and Xianfeng Chen1

1State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy,
Shanghai Jiao Tong University, Shanghai 200240, China

2Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region 142190, Russia
3Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering,

Tel Aviv University, Tel Aviv 69978, Israel
*Corresponding author:fangweiye@sjtu.edu.cn

Received July 17, 2014; revised August 6, 2014; accepted August 7, 2014;
posted August 11, 2014 (Doc. ID 217253); published September 15, 2014

The concept of the PT symmetry, originating from the quantum field theory, has been intensively investigated in
optics, stimulated by the similarity between the Schrödinger equation and the paraxial wave equation governing the
propagation of light in guiding structures. We go beyond the paraxial approximation and demonstrate, solving the
full set of the Maxwell’s equations for the light propagation in deeply subwavelength waveguides and periodic
lattices with balanced gain and loss, that the PT symmetry may stay unbroken in this setting. Moreover, the
PT symmetry in subwavelength guiding structures may be restored after being initially broken upon the increase
of gain and loss. Critical gain/loss levels, at which the breakup and subsequent restoration of the PT symmetry
occur, strongly depend on the scale of the structure. © 2014 Optical Society of America
OCIS codes: (050.6624) Subwavelength structures; (260.2710) Inhomogeneous optical media.
http://dx.doi.org/10.1364/OL.39.005443

The canonical quantum theory postulates that every
physical observable is associated with a Hermitian oper-
ator, guaranteeing that eigenvalues of this operator
are real. Nevertheless, systems with non-Hermitian
Hamiltonians, which obey the parity-time �PT � sym-
metry [1], may also have purely real spectra. The PT
symmetry implies that the Hamiltonian includes a
complex potential obeying condition V�x� � V��−x�. A
transition to a complex spectrum, which is called the
PT symmetry breaking, occurs with the increase of
the strength of the imaginary part of the potential [1].
The PT symmetry has been a subject of active inves-

tigations in optics, as photonic structures offer a real
platform for the implementation of this concept [2–5].
The above-mentioned condition, V�x� � V��−x�, is
translated into the requirement of the spatial symmetry
of the refractive index and antisymmetry of the gain/
loss profile in guiding optical structures. The concept
of the PT symmetry was extended to nonlinear cou-
plers [6,7], periodic lattices [8–12], and nonlinear com-
plex potentials [13,14]. Remarkable effects, such as
unidirectional invisibility [15] and the absence of reflec-
tion [16], were demonstrated in PT -symmetric optical
structures.
Previous works on the PT symmetry in optics as-

sumed paraxial propagation in shallow refractive-index
landscapes, with all spatial scales being much larger than
the wavelength of light. Accordingly, the light transmis-
sion is governed by the Schrödinger equation, implement-
ing the similarity to PT -symmetric Hamiltonians in the
quantum theory.
The advance in the nanofabrication technologies sug-

gests the use of nanoscale structures, where the light
propagation is directly governed by the Maxwell’s equa-
tions (ME). Numerous works have addressed the propa-
gation of light in diverse passive subwavelength-guiding
settings [17–20]. However, the PT symmetry has never
been studied in deeply subwavelength structures with

the balanced gain and loss. The stark difference between
the scalar paraxial Schrödinger equation and the full
ME system for the vectorial fields suggest the following
questions: Can the concept of the PT symmetry, that
was originally formulated in terms of the Schrödinger
equation, be carried over into the ME realm? how do
vectorial and nonparaxial effects, inherently present
in the ME, affect the PT symmetry? It is relevant to
add that the PT symmetry was recently applied to
metamaterials [16,21,22] (still, relying on the paraxial
description). The use of the ME should be essential in
this context too, as such materials are built of subwave-
length elements.

In this Letter, we address two basic active subwave-
length structures: a single waveguide, and a periodic lat-
tice, with the real and imaginary parts of the dielectric
permittivity being, respectively, even and odd functions
of the transverse coordinate. By solving the full ME sys-
tem, we demonstrate that the PT symmetry persists in
these settings at the subwavelength scale. In contrast
to the paraxial approximation, where the PT symmetry
is always broken above a critical value of the gain/loss
coefficient, in the nonparaxial regime, this symmetry
may be restored after its initial breakup, following the
increase of the gain/loss strength.

We consider the propagation of a TM-polarized light
beams (i.e., only Ex; Ez;Hy components of the electric
and magnetic fields are nonzero) along the z axis in a
medium whose dielectric permittivity is modulated in
the transverse direction, x. The evolution of the field
components is governed by the reduced ME system:
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with Ez � �i∕ε0εrelω�∂Hy∕∂x. Here ε0 and μ0 are the
vacuum permittivity and permeability, ω is the field
frequency, and εrel�x� � εbg � εre�x� � iεim�x� is the
relative permittivity of the PT -symmetric structure,
with background permittivity εbg. In what follows below,
we fix wavelength λ � 632.8 nm, εbg � 2.25, and con-
sider the following permittivity landscapes:

εrel�x� � εbg � p sech2�x∕d� � iα sech�x∕d� tanh�x∕d�;
(2a)

εrel�x� � εbg � p cos�2πx∕d� � iα sin�2πx∕d�; (2b)

for an isolated waveguide and periodic lattice, respec-
tively, where p and α determine the modulation depths
of the real and imaginary parts of the dielectric permit-
tivity, while d is the waveguide’s width or lattice period.
Varying d, one can pass from paraxial �d ≫ λ� to subwa-
velength �d < λ� regime. Even and odd refractive-index
and gain-loss profiles in Eq. (2), nre�x� and nim�x�, cor-
respond to εrel�x� ≡ �nre�x� � inim�x��2.
Guided modes in the single waveguide [Eq. (2a)] are

looked for as �Ex�x;z�;Hy�x;z����Ex�x�;Hy�x��exp�ibz�,
where complex propagation constant b � br � ibi identi-
fies three possible types of solutions: (i) bound modes
with br > ε1∕2bg and bi � 0, propagating without attenua-
tion or growth, (ii) decaying or growing boundmodeswith
br > ε1∕2bg and bi ≠ 0, and (iii) delocalized modes with

br < ε1∕2bg . Following the common definition, the PT sym-
metry remains unbroken as long as the system’s spectrum
remains purely real for a given set of p; α; d values.
Eigenmodes of the waveguide were found using

an eigen-system package (Fortran LAPACK) and
checked by a commercial mode-solver [23]. Figure 1

shows dependencies br;i�α� for different widths of the
waveguide. For relatively broad (but subwavelength)
waveguides with d � 120 nm, the picture in Fig. 1(a)
is similar to that known in the paraxial regime. Although
the permittivity is complex, for relatively small α the
propagation constants of all the modes remain purely
real, i.e., the PT symmetry holds. When α approaches
the so-called exceptional value, αex ≈ 1.95 in the present
setting, a pair of modes with complex-conjugate propa-
gation constants emerge. The magnitude of jbij increases
with α without any signature of saturation.

The results displayed in Fig. 1 are produced by solving
the full vectorial ME in the subwavelength structure,
therefore the persistence of the conventional features
of the PT symmetry, viz., purely real spectra under
the complex permittivity, and its spontaneous breaking
at the exceptional point, should not be taken for granted,
as these properties were previously produced solely by
the Schrödinger equation.

Another noteworthy property of the PT symmetry is
revealed when the size of the waveguide is downscaled
to the deep-subwavelength regime [d � 60 nm in
Fig. 1(b)]. In this case, the system keeps a real spectrum
at α < αex. The distributions of jExj and jEzj in the
corresponding fundamental mode are symmetric

Fig. 1. Real br and imaginary bi parts of the propagation con-
stant versus α for the single waveguide with d � 120 nm (a),
d � 60 nm (b), and d � 30 nm (c). Circles in (b) correspond
to the eigenmodes shown in Fig. 2, and examples of the propa-
gation dynamics in Fig. 3. In all the cases, p � 1.7.

Fig. 2. Profiles of the guided modes at (a) α � 2.0, (b) α � 4.5,
and (c) α � 9.5. Two modes at α � 4.5 are mutually conjugate,
therefore only the growing one is shown. Fields Ex;z are plotted
in dimensionless units, while transverse coordinate x is
measured in μm. In all the cases, p � 1.7.
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[Fig. 2(a)]. In this deeply nonparaxial regime, the ampli-
tude of the longitudinal field is comparable to that of the
transverse ones. The spectrum becomes complex at
α > αex, when a pair of complex-conjugate eigenvalues
appears, and the distribution of jEx;zj becomes notably
asymmetric [Fig. 2(b)].
A striking property of the nonparaxial PT symmetry is

that further increase of the gain/loss strength results in
the restoration of the real spectrum, at α > αrest. Then,
the spectrum remains purely real even for very large
values of α. This is accompanied by the restoration of
the symmetry of the jEx;zj profiles, which become very
narrow [Fig. 2(c)]. The restoration of the PT symmetry
occurs only in sufficiently narrow waveguides, i.e., it is a
truly nonparaxial effect. Moreover, further decrease of
the waveguide’s width to d � 30 nm results in complete
elimination of the PT -symmetry-breaking effect, with
the spectrum remaining purely real for any α [Fig. 1(c)].
An opposite scenario was recently demonstrated in

Ref. [24]: broken PT symmetry was recovered and
broken again in a model with two gain-loss coefficients.
Typical mode evolution scenarios, for different values

of α and d � 60 nm, are presented in Fig. 3. The modes
below the exceptional point propagate as stationary
ones [Fig. 3(a)], while the modes in the region of the
broken PT symmetry, with complex-conjugate values
of b, are either amplified [Fig. 3(b), bi < 0] or attenuated
[Fig. 3(c), bi > 0]. At α > αrest, the modes with the
restored symmetry again exhibit the stationary propaga-
tion [Fig. 3(d)].
Figures 4(a) and 4(b) summarize properties of the

propagation spectra in the �d; α� plane for p � 0.3 and
p � 1.7, respectively. In addition to the PT -symmetry-
restoration regions, the figures reveal the dependence
of the exceptional point α � αex, at which the initial
symmetry breaking occurs, on the waveguide’s width
d. For relatively wide waveguides with d > 300 nm,
the symmetry breaking occurs at αex ≈ p, which is nearly
independent of d. However, as d decreases, αex grows
and diverges at some point (at d ≈ 44 nm for p � 0.3,
and at d ≈ 53 nm for p � 1.7), indicating that the PT
symmetry is always preserved in the sufficiently narrow
waveguide. Localized modes do not exist in blue domains
of the �d; α� plane.
In subwavelength periodic lattices with symmetric

εre�x� and antisymmetric εim�x� permittivity profiles
[Eq. 2(b)], the eigenmodes are extended Bloch

waves, whose profiles can be found as H�n�
y �x; z� �

H�n�
y �x� exp�ikx� ib�n�z�, where H�n�

y �x� is a d–periodic
function, k is the Bloch momentum, and n is the
band index, with similar expressions for field compo-
nents Ex;z. Dependencies of propagation constant

Fig. 3. Propagation of the eigenmodes in the 60 nm-wide
waveguide with p � 1.7 at (a) α � 2.0, (b), (c) α � 4.5 (both
growing and decaying modes are shown), and (d) α � 9.5.
The propagation distance is 40 μm in (a), (d) and 2 μm in
(b), (c).

Fig. 4. Existence domains for eigenmodes of an isolated wave-
guide (a), (b), and Bloch modes of the periodic lattice (c), on
the �d; α� plane. Region 1 corresponds to broken PT symmetry,
in the region 2 there are no localized modes, region 3 corre-
sponds to the unbroken or restored PT symmetry. In all the
cases, d is measured in nm. In (a) p � 0.3, in (b) p � 1.7,
and in (c) p � 0.7.

Fig. 5. Dependencies b�n�r �k� and b�n�i �k� for the first and sec-
ond allowed bands of the lattice with d � 230 nm and p � 0.7,
at α � 0.6 (a), α � 6.0 (b), and α � 14.2 (c). In panel (c), zero
imaginary parts, b�1�i ; b�2�i � 0, are not shown.
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b�n� � b�n�r � ib�n�i , in different bands, on momentum kd∕π
are strongly affected by the value of α.
For relatively large periods, d ∼ λ, two upper allowed

bands, b�1�r and b�2�r , that were separated by the gap at
α � 0, approach each other with the increase of α, until
theymerge at points kd∕π � 	1 at αex � p. In the merger
region, we have b�1�r � b�2�r and b�1�i � −b�2�i ≠ 0. The sub-
sequent increase of α leads to the merger of higher-order
Bloch bands, so that the PT symmetry remains broken at
αex > p. The situation changes drastically for small lattice
periods, as shown in Fig. 5 for d � 230 nm and p � 0.7.
In this case, one encounters two bands separated by a
gap at α � 0 [Fig. 5(a)], which exhibit the merger at α >
p [Fig. 5(b)]. However, at sufficiently large strengths of
the imaginary part of the periodic potential, α > 12.6,
the first gap reopens, and the PT symmetry is completely
restored, with a purely real spectrum of the eigenmodes
[Fig. 5(c)]. The first gap remains open within a finite in-
terval of 12.6 < α < 16.3, and then shrinks again [see
Fig. 6(a) which display b�n�r �α� dependencies correspond-
ing to the bottom of the first band, top of the second
band, and top of the third band], so that the system
re-enters the broken-PT -symmetry state. Then, restora-
tion of the PT symmetry occurs again at even higher val-
ues of α [see an open gap between b�1�r ; b�2�r ; b�3�r curves in
Fig. 6(b) corresponding to a purely real spectrum]. The
domain where the PT symmetry is restored in the sub-
wavelength lattice is shown gray in Fig. 4(c).

Propagation scenarios for Bloch waves corresponding
to the cases depicted in Fig. 5 are shown in Fig. 7. Below
the PT -symmetry-breaking point, the Bloch modes cor-
responding to k � π∕d propagate steadily [Fig. 7(a)], as
the spectrum is real. Above the critical point, the Bloch
modes with k � π∕d grow or decay [Fig. 7(b)]. When the
PT symmetry is restored, one again observes stationary
propagation [Figs. 7(c), 7(d)].

To summarize, we extended the PT symmetry concept
to the subwavelength setting governed by the ME system.
In contrast to paraxial systems, where the PT symmetry
is broken above the exceptional point, subwavelength
structures allow restoration of the symmetry beyond this
point. The PT symmetry may stay intact (endless) if the
width of the waveguide is small enough. We leave analy-
sis of TE waves for subsequent work.
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Fig. 6. Dependencies b�n�r �α� in the lattice with d � 230 nm,
p � 0.7 in the intervals of α where reopening of the first finite
gap occurs.

Fig. 7. Propagation dynamics of Bloch waves with k � π∕d in
the array with period 230 nm and p � 0.7. (a) A wave from the
first band at α � 0.6, (b) a decaying wave at α � 6.0 from the
region where the first and second bands fuse, (c) a wave from
the first band at α � 14.2, (d) a wave from the second band at
α � 14.2. The propagation distance is 20 μm in (a), (c), (d), and
2 μm in (b).
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